|   翻訳と辞書 | 
| 	Prüfer sequence  : ウィキペディア英語版 |   Prüfer sequence In combinatorial mathematics, the Prüfer sequence (also Prüfer code or Prüfer numbers) of a labeled tree is a unique sequence associated with the tree.  The sequence for a tree on ''n'' vertices has length ''n'' − 2, and can be generated by a simple iterative algorithm.  Prüfer sequences were first used by Heinz Prüfer to prove Cayley's formula in 1918. ==Algorithm to convert a  tree into a Prüfer sequence== One can generate a labeled tree's Prüfer sequence by iteratively removing vertices from the tree until only two vertices remain.  Specifically, consider a labeled tree ''T'' with vertices .  At step ''i'', remove the leaf with the smallest label and set the ''i''th element of the Prüfer sequence to be the label of this leaf's neighbour. The Prüfer sequence of a labeled tree is unique and has length ''n'' − 2.
  抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Prüfer sequence」の詳細全文を読む
 
 
  スポンサード リンク 
| 	翻訳と辞書 : 翻訳のためのインターネットリソース |  
  Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
  |  
  |